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Abstract

Large Language Models (LLMs) like closed weights ones GPT-3.5/4, Claude,
Gemini or open weights ones like LLaMa 2/3, Mistral, Mixtral, and more recent
ones Dbrx or Command R+ are often described as being instances of foundation
models - that is, models that transfer strongly across various tasks and conditions in
few-show or zero-shot manner, while exhibiting scaling laws that predict function
improvement when increasing the pre-training scale. These claims of excelling
in different functions and tasks rely on measurements taken across various sets of
standardized benchmarks showing high scores for such models. We demonstrate
here a dramatic breakdown of function and reasoning capabilities of state-of-the-
art models trained at the largest available scales which claim strong function,
using a simple, short, conventional common sense problem formulated in concise
natural language, easily solvable by humans. The breakdown is dramatic, as
models also express strong overconfidence in their wrong solutions, while providing
often non-sensical "reasoning"-like explanations akin to confabulations to justify
and backup the validity of their clearly failed responses, making them sound
plausible. Various standard interventions in an attempt to get the right solution, like
various type of enhanced prompting, or urging the models to reconsider the wrong
solutions again by multi step re-evaluation, fail. We take these initial observations
to the scientific and technological community to stimulate urgent re-assessment
of the claimed capabilities of current generation of LLMs, Such re-assessment
also requires common action to create standardized benchmarks that would allow
proper detection of such basic reasoning deficits that obviously manage to remain
undiscovered by current state-of-the-art evaluation procedures and benchmarks1.

1 Introduction

In the recent breakthroughs on transferable learning that were achieved in various classical domains
of machine learning like visual recognition [1] or language understanding [2, 3, 4], large language
models (LLMs) have played a very prominent role. Auto-regressive language modelling by next token
prediction using causal mask losses was among the first successful approaches to self-supervised
learning that was also scalable, both in terms of available web-scale text data and model scale [4]. The
generic form and scalability of this type of learning allowed then to push towards training scales not
achievable before with conventional supervised label-based learning, and provided glimpse on what
happens on those larger scales. Scaling laws derived via training experiments on much smaller scales

1Code for reproducing experiments in the paper and raw experiments data can be found at AIW repo
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(2-3 orders of magnitude in model and data scale) enabled to predict the properties and functions of
models trained on larger scales [5, 6].

Using standardized benchmarks for language based tasks, those predictions were confirmed by
training very large language models like closed GPT-3/4 [4, 5, 7] or open weights models like Llama
[8, 9] or Mistral [10], and observing high benchmark scores across a broad range of various task
types, which matched the predictions of strong function and transfer to novel task types and scenarios.
LLMs excelled especially in few-shot and zero-shot tasks [11], outperforming previous state-of-the
art (SOTA) by extremely large margins and showing so called emergent functions like in-context
learning not encouraged explicitly during pre-training, providing further hints for the generalization
and transfer capabilities of very different kind as opposed to those that were possible in the machine
learning field before.

There were however observations made by various works that questioned the claimed strong out-
of-distribution generalization, transfer and reasoning capabilities attributed to LLMs [12]. These
works pointed out various function failures that were seemingly incompatible with postulated strong
capabilities as measured by standardized benchmarks [13, 14, 15, 16]. However, it has also been
noted that observed failures can frequently be addressed through simple adjustments to the prompts
or by repeated execution and evaluation using majority voting, or by requesting the model to perform
self-verification. [17, 18, 19, 20, 21]. This questions whether there is a real deficit in core model
capabilities or whether there is rather a minor issue that can be easily resolved by a more careful, but
simple, model handling.

To shed light on this current situation, we introduce here a simple, short conventional problem that is
formulated in concise natural language and can be solved easily by humans. The original problem
formulation, of which we will present various versions in our investigation is as following: "Alice

has N brothers and she also has M sisters. How many sisters does Alice’s brother have?". The
problem features a fictional female person (as hinted by the "she" pronoun) called Alice, providing
clear statements about her number of brothers and sisters, and asking a clear question to determine
the number of sisters a brother of Alice has. The problem has a light quiz style and is arguably no
challenge for most adult humans and probably to some extent even not a hard problem to solve via
common sense reasoning if posed to children above certain age.

We posed varying versions of this simple problem (which in following we will refer to as "Alice In
Wonderland problem", AIW problem) to various SOTA LLMs that claim strong reasoning capabilities.
We selected closed ones like GPT-3.5/4/4o (openAI), Claude 3 Opus (Anthropic [22]), Gemini
(Google DeepMind [23]), and open weight ones like Llama 2/3 (Meta), Mistral and Mixtral (Mistral
AI), including very recent Dbrx by Mosaic [24] and Command R+ by Cohere [25] (which are stated
in numerous announcements to lead the open weights models as of April 2024, according to open
LLM leaderboards). We analyse the response statistics and observe strong collapse of reasoning
and inability to answer the simple question as formulated above across most of the tested models,
despite claimed strong reasoning capabilities. Notable exceptions are Claude 3 Opus and GPT-4 that
occasionally manage to provide correct responses backed up with correct reasoning as evident in
structured step by step explanations those models deliver together with solution. However, Claude 3
Opus and GPT-4 still show frequent failures to solve this simple problem across trials. Following the
relational logic of the problem, we formulated a harder form, where both Claude 3 Opus and GPT-4o
collapse almost to 0 success rate.

This breakdown can be considered to be dramatic not only because it happens on such a seemingly
simple problem, but also because models tend to express strong overconfidence in reporting their
wrong solutions as correct, while often providing confabulations to additionally explain the provided
final answer, mimicking reasoning-like tone but containing nonsensical arguments as backup for the
equally nonsensical, wrong final answers. Those confabulated explanations may mislead readers into
thinking that there might be sound reasoning behind the wrong answers, or at least stir confusion, as
they often sound plausible while being entirely or partly off. The breakdown appears dramatic also
because when attempting to fix the failures via various usual interventions like enhanced prompting or
by explicitly pointing the models to committed mistakes and requesting to reconsider the responses,
the models keep producing more nonsense, often in lengthier and sometimes more entertaining form,
leading stubbornly to the same wrong final answers. We provide examples of such failures in various
SOTA models that claim strong reasoning.
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In the face of these observations and findings, we conclude that the capabilities of the current
generation of SOTA LLMs to perform even simple reasoning on common sense tasks are heavily
compromised and that current language model benchmarks, especially those aiming on measuring
reasoning capabilities, do not properly reflect such weaknesses. We discuss how this can be consistent
with the observed strong performance on a range of complex real world tasks (e.g., graduate exams)
and finish with a call to the scientific community to address the challenge of re-assessing the reasoning
capabilities of LLMs together by building reasoning task benchmarks that are able to spot such various
deficits and thus show the path for improvement of current unsatisfactory state.

2 Methods & Experiment Setup

2.1 Finding a simple common sense reasoning task that break the models

Following a number of works that attempt to test capabilities and identify weak spots of current LLMs,
we were looking for a simple problem setting that would allow us to test a model’s ability to perform
basic reasoning with a common sense character. We looked into tasks presented to elementary school
students of age 7-10 on the level of math Olympiads composed for young children. Solving such
tasks does not require sophisticated knowledge, but already contains challenges that are not entirely
trivial and have to be solved by carefully applying various forms of basic reasoning.

Taking inspiration from those problems and aiming for even simpler settings, we arrived at a very
simple problem template that can be easily solved using common sense reasoning but is not entirely
straightforward, of the following form: "Alice has N brothers and she also has M sisters. How

many sisters does Alice’s brother have?". The problem - we call it here "AIW problem" - has a
simple common sense solution which assumes all sisters and brothers in the problem setting share the
same parents. The correct response C - number of sisters - is easily obtained by calculating M + 1
(Alice and her sisters), which immediately gives the number of sisters Alice’s brother has.

Initially, we assumed that the AIW problem will pose no challenge for most of the current state-of-
the-art LLMs. In our initial experiments, we started by looking at the problem instance with N = 4
and M = 1, with correct the response being C = 2 sisters and we noticed to our surprise that on the
contrary, most state-of-the-art models struggle severely to provide correct responses when confronted
with the problem. We also noticed during early experimentation that depending on choice of N and
M and also the ordering of brothers and sisters in the sentence, the rate of correct responses may
vary substantially.

Often, models seemed to rely on attempting to execute various basic arithmetical operations on
the numbers mentioned in the problem to arrive to a final answer. The probability to get a correct
response was thus influenced by how likely executing few arbitrary simple calculations, like additions
or multiplications that included numbers presented in the problem text, might also accidentally result
in a correct answer, although the way of arriving there had nothing to do with correct reasoning (see
Appendix G for a selection of such examples). After rounds of experimentation with instances of
the AIW problem, varying numbers and ordering, we arrived at four different problem instances, or
problem variations, which we term "AIW Variation" 1-4. Each variation has a particular combination
of N , M numbers with a corresponding correct answer C, and ordering of brothers-sisters in the
AIW problem as presented above: AIW Variation 1, N = 3,M = 6, C = 7; AIW Variation 2,
N = 4,M = 2, C = 3; AIW Variation 3, N = 1,M = 4, C = 5; AIW Variation 4, N = 4,M =
1, C = 2. When choosing variations, we aimed at reducing the probability of arriving at a correct
answer by change by executing an arbitrary chosen simple one-step arithmetical operation on numbers
in the problem (only Variation 3 allows that; see Suppl. Sec. B for the full version of the prompts
constructed from those variations).

We then used this set of the AIW problem variations to conduct our main experiments, which allowed
us to arrive at central conclusions of our investigation regarding basic reasoning capabilities of the
studied LLMs.

2.2 Evaluating model responses

To perform evaluations of model performance, we were confronted with the question of how to parse
and extract the final answer from the responses provided by the models when confronted with the
input containing the AIW problem formulation. On the one hand, it should be possible to deal with
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any response provided by the model as a solution, while on the other hand allowing to extract a clear
final answer as a number to be compared with the correct answer, such that for each model response
a decision can be made on whether the provided response was right or wrong. To be able to keep
the parsing procedure simple (without involving for instance another suitable LLM prompting it
to extract the relevant part of response), we have chosen to add to the problem prompt following
passage: "provide the final answer in following form: "### Answer: "". We observed that all models
we have chosen to test were able to follow such an instruction, providing a response that could be
easily parsed.

The presented prompt extension makes it possible to extract for each prompting trial whether a model
has provided a correct answer to the AIW problem posed in the input. We can interpret then any
number n of collected responses as executing n trials given a particular prompt for a given model
(n - number of Bernoulli trials), observing in each i�th trial a Bernoulli variable Xi = {0, 1}. We
interpret the number of correct responses X =

P
i Xi as random variable following a Beta-Binomial

distribution with unknown probability p of correct response that we also treat as random variable
that comes from a Beta distribution, i.e. p ⇠ Beta(↵,�), where ↵ and � are parameters of the
Beta distribution. To obtain plots showing correct response ratios, we would like to estimate Beta
distribution underlying p, and for that, we first estimate the mean of p and its variance from the
collected observations. To estimate p̂, we use the formula for estimating the mean of p for a binomial
distribution: p̂ = X/n (i.e. as a proportion of successes). We can report the estimate p̂ as the estimate
of the correct response rate of a given model and also, compare the correct response rates of various
tested models. Moreover, we can estimate the variance of the probability of a correct response by
using the following formula:

var
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The estimates of the variance and the standard deviation of p can be thus obtained by using p̂ as
p̂(1�p̂)

n and
q

p̂(1�p̂)
n respectively. Using the estimated variance and mean of p, we can use the

following relations for the variance:
⇣
�2 = n↵�(↵+�+n)

(↵+�)2(↵+�+1)

⌘
and the mean

⇣
µ = ↵

↵+�

⌘
in order

to obtain ↵ and � parameters for the Beta distribution. To simulate data for the plots, we draw N
random samples corresponding to correct and incorrect responses using the estimated distribution
of p and obtain the plots showing performance on the task for various models of interest as a full
distribution of the respective p.

Model prompt types. It is well known that so-called prompt engineering can heavily influence the
model behavior and model response quality [26, 27, 28]. To account for the response variations due to
various prompt forms, we created 3 distinct prompt types asking for the solution to the AIW problem:
STANDARD, THINKING, and RESTRICTED. The STANDARD prompt type asks to solve the
posed problem and output the final answer in the format as described above. This does not put any
specific requirements on model behavior. The THINKING prompt type extends STANDARD with
the request to think carefully and double check the solution for any mistakes. This should encourage
model to invest more computation into obtaining the solution. In contrast to this, the RESTRICTED
prompt urges the model to output only the final answer without any further text. This is supposed to
restrict compute invested in producing output. We observe substantially shorter outputs across tested
models compared to STANDARD and THINKING for this prompt type (Suppl. Fig. 13).

Furthermore, we make use of several prompt types (see Suppl. Sec.B for overview) to demonstrate
the important properties and the different success or failure modes of the model behavior for the
AIW problem. In those prompts, we re-use the main problem formulation as introduced in Sec. 2.1,
while adding various modifications. This allows us for instance, to see examples of confabulations
that contain clearly broken reasoning-like statements backing up wrong final answers, expression of
levels of certainty highlighting overconfidence and miscalibration, or in-context learning handling.

2.3 Selecting models for evaluation and conducting experiments

We are interested in testing current state-of-the-art models that claim strong function, especially in
reasoning, backed up by high scores shown on standardized benchmarks that are assumed to measure
problem solving and reasoning capabilities. We therefore select models widely known and used in the
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ML community that also appear in the top rankings of the popular LLM leaderboards, like openLLM
leaderboard by HuggingFace or ELO leaderboard by LMsys. All those models are listed in Suppl.
Tab. 4, together with the corresponding standardized benchmarks where they obtain strong scores.
Whenever possible, we chose from the same family of models with various scales, ranging from
small to large, in order to see how the capabilities to solve the posed task may vary with scale.

Having selected the models to test, we conduct our main experiments by exposing each model to
the collection of prompts that contain AIW problem variations as described in Sec. 2.1,2.2. We
use hosting platforms that offer API access to the models we test, and automatize the procedure by
scripting the routines necessary to prompt models with our prompts set. The routines are simple and
can be used by anybody with access to the APIs (we used litellm and TogetherAI for our experiments)
or to locally hosted models to reproduce and verify our results. We protocol all the data from
interactions with the models to enable checking by the community. The collected data is then used to
investigate correct response rates of the models as described in Sec. 2.2. We also use distinct prompt
types STANDARD, THINKING, RESTRICTED to observe differences in model response depending
on the compute the model is encouraged to invest into producing the output. For each model, we
obtain at least 30 trials for each combination of AIW variation and prompt type (Suppl. Fig. 12). We
also use variations of the prompts to study responses given by base models as a control experiment
to check whether we see any difference with respect to main observations done on instruction type
models, and we employ further prompt variations to demonstrate the model confidence estimation
and self-verification or self-correction attempts (see Suppl. Sec.B for the examples of such prompts).

3 Results

Figure 1: Alice is reasoning: will it break? Illustration of Humpty Dumpty from Through the Looking
Glass, by John Tenniel, 1871. Source: Wikipedia.

3.1 Humpty Dumpty sat on a wall: breakdown of SOTA LLMs on the simple AIW problem

AIW causes collapse of reasoning in most SOTA LLMs. Following the procedures described
in Sec 2.3, we expose the selected models that claim strong function and reasoning capabilities
(Fig. 1) and assess their performance in the form of correct response rate to the various prompt
types containing the problem description. We summarize the main results in the Fig. 2. The results
suggest that confronted with the AIW problem described in Sec 2.1, most of the models suffer a
severe breakdown, with many not being able to deliver a single correct response and the majority
not being able to obtain a correct response rate above p = 0.2. The only major exceptions from this
main observation of model reasoning failure are the largest scale closed models GPT-4 (openAI) and
Claude 3 Opus (Anthropic). These two model types at largest scales obtain correct response rates
well above p = 0.3, leaving the remaining large and smaller scales open-weights (e.g., Mistral-7B,
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Figure 2: Collapse of most SOTA LLMs on AIW problem. Models with non-zero AIW (main) and
AIW+ (inlay) correct response rate (averaged across prompt variations with prompt types THINKING
and STANDARD). Leading on AIW, GPT-4o collapses strongly on AIW+. Omitted models score 0.

Mixtral, Qwen, Command R+, and Dbrx Instruct) and closed-weights models (e.g., Gemini Pro,
Mistral Large) far behind.

The results presented in the Fig. 2 show estimates for correct response rates for STANDARD and
THINKING prompt types - we separate RESTRICTED prompt type results since this prompt forces
models into short outputs, restricting the compute they can spend on providing a solution and further
deteriorating the response quality (see Suppl. Sec. C for more details). Among the 4 models that
are able to cross p = 0.3, two clear winners are the very recent GPT-4o and Claude 3 Opus, while
the only open-weights model in this set of better performers is the rather older Llama-2 70B Chat.
By inspecting the responses with correct answers provided by those better performers, we indeed
see mostly correct reasoning executed to arrive at the final correct answer. For the models that do
not perform well and are able to deliver correct answers only seldomly, we still see in some of
those very rare responses with correct final answer correct proper reasoning, for instance in case
of Mistral/Mixtral, Dbrx Instruct, CodeLLama. We see however also responses with a correct final
answer, which after careful inspection, turns out to be an accident of executing entirely wrong
reasoning, where many accumulating mistakes accidentally lead to the final number corresponding
to the right answer. Those wrong-reasoning-right-answer responses are encountered in models that
perform poorly (p < 0.3) (see Suppl. Sec. D for response examples). Further, we also observe strong
fluctuation of correct response rates across AIW variations 1-4 as introduced in Sec. 2.2 (Suppl. Sec.
C, Fig. 11) and also across prompt types, especially RESTRICTED vs STANDARD and THINKING
(Suppl. Fig. 9)

Standardized benchmarks failure. All of the tested models report high scores on various standard-
ized benchmarks that claim to test reasoning function, e.g. MMLU, ARC, Hellaswag, to name a
few. Clearly, our observations hint that those benchmarks do not reflect deficits in basic reasoning of
those models properly. We visualize this failure by plotting performance of tested models that are
reported to obtain on wide-spread and accepted standardized benchmarks like MMLU versus the
performance we observe on our proposed AIW problem. As strikingly evident from Fig. 3, there is a
strong mismatch between high scores on MMLU reported by the models and the correct response
rates they obtain on AIW. This miscalibration with respect to standardized benchmarks makes it
impossible for a given model to predict from higher scores on MMLU whether the model will be
also able to solve AIW on the one hand. On the other hand, it deranges any model comparison with
the standardized benchmark, as models with higher MMLU can have complete breakdown in AIW,
while models with lower MMLU can have some non-negligible AIW performance. A clear example
of such case is comparison LLama 2 70B and such models claiming very strong performance like
Command R+ or Dbrx. Those recent models claiming strong function via scoring clearly higher on
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Figure 3: Failure of standardized benchmark MMLU to properly reflect and compare model basic
reasoning capabilities as shown by strong discrepancy between AIW correct response rate vs MMLU
average score. Many models, eg. Command R+, score 0 on AIW, but have high MMLU score.

MMLU (and other standardized benchmarks) than older LLama 2 70B undergo severe breakdown on
AIW - e.g. Command R+ is hardly able to solve any instance of an AIW task (see also Suppl. Tab.
4). For further results on other standardized benchmarks with similar character see Suppl. Sec. C.3,
Suppl. Tab. 5 and Suppl. Fig. 4,5,6,7.

Go small, go home: breakdown at smaller scales. The few models capable of showing significant
non-zero correct response rate for the AIW problem are residing on the largest scale. GPT-4 and
Claude 3 Opus have unknown scales, it is however reasonable to assume the model scale is well
beyond 70B params and the tokens scale is well beyond 2T tokens. Observing the performance
on the AIW problem across various models, we see evidence that LLama 2 is a model family that
has significantly higher correct response rates compared to other models that have non-zero correct
response rates. Within the LLama 2 family, while 7B and 13B model scales achieve non-zero rates,
70B is clearly outperforming those smaller scales (Fig. 2, 3, Suppl. Tab. 4). In general, we observe
that smaller scale models (known to have been overtrained on large token budgets of > 2T tokens)
that have quite high scores on standardized reasoning benchmarks coming close to larger scale ones,
suffer severe collapse on the AIW problem and no small scale model can even remotely approach the
performance shown by larger scale ones that can occasionally handle the AIW problem (LLama 2
70B, GPT-4 or Claude Opus).

3.2 Curiouser and curiouser

Following our observations of failure of most SOTA LLM models that claim strong function described
in Sec. 3.1, we investigated various properties and modes of the observed failure, reporting here the
ones we find most remarkable. Investigating the AIW problem further, we also find a formulation
(termed AIW+) that is even harder to solve for all the tested SOTA models and we observe strong
collapse of the performance across all tested models when exposing them to the AIW+ problem.

Overconfidence about wrong solutions. Observing strong failures, we were curious to see how
models explain their generated solutions. For the THINKING prompt type, where prompt contains
request to double check the solution, we encounter examples where models spontaneously provide
assessment of the solution quality and their confidence into the solution. Remarkably, we see that in
many cases of the observed responses with wrong reasoning and wrong final answers, the models
claim high quality for their provided solution and are also strongly confident that the provided wrong
solution is correct. For instance, Claude 3 Opus uses expressions like “logic holds up; double-
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checking the solution; no mistakes in the reasoning; solution is correct.", and Command R+ reports
“This conclusion is straightforward and clear" for the wrong answers they provide.

We further use variations of the prompt types to make the models generate estimates of the solution
quality and their confidence on it, like the SCIENTIST prompt or the CONFIDENCE prompt (see
Suppl. Sec. B). With those customized prompt types, we again observe strong overconfidence in
the solution quality across the tested models. For the SCIENTIST prompt type, we see for instance
LLama 2 70B using persuasive expressions like “carefully analyzing; use logical reasoning; provide a
precise and accurate solution; conclusion might seem counterintuitive at first, but it’s actually correct"
to back up its wrong solutions. For the CONFIDENCE prompt type, we see for instance for the
wrong responses given by Command R+ accompanying statements like “The solution is clear and
unambiguous, and I am highly confident that it is correct."; “I am confident in this answer, as it
logically follows from the provided information.". See Suppl. Sec. F for full examples.

Confabulations to back up wrong solutions. We observe that many models that show reasoning
breakdown and produce wrong answers generate at the same time persuasive explanations that contain
reasoning-like or otherwise plausible sounding statements to back up the often non-sensical solutions
they deliver. We call here such phenomena confabulations. Such confabulations may contain for
instance calculations or logic-like statements that make no sense. Confabulations can also refer
to reasoning about social norms or structures. For instance, in Command R+ we observe many
confabulations that use concepts of gender identity such as non-binary gender or concepts related to
inclusion or to cultural context dependent family identification as additional backup for the provided
wrong reasoning and incorrect answers. Another type of confabulation that we observe is complete
refusal to answer due to invented ethical concerns about the nature of the posed AIW problem, such as
violation of privacy or lack of inclusion (for instance in CodeLLama-70B-instruct), or by expressing
incorrect concerns about supposedly ill-posed problem formulation. See Suppl. Sec. G for more
details.

Hard AIW+ problem formulation: breakdown of even the strongest models. Aiming to show that
further extension of the initially very simple AIW problem to a harder level will cause further trouble
for the tested models, we constructed an AIW+ problem that uses same logic as AIW, but features
additional hierarchy and distractors when describing relational family structure (see Suppl. Sec B for
full formulation). We manually evaluate the responses for the AIW+ problem to make sure that the
models we are testing couldn not just guess and accidentally come to the right solution. Exposing
models to AIW+ following same methodology from Sec. 2, we observe further, even stronger collapse
of performance, also for those models that were showing significant correct response rates for AIW
problem. Remarkably, on AIW+ the GPT-4 (also GPT-4o) and Claude 3 Opus models claiming very
strong function collapse to a level close to 0 (see Fig. 2 (inlay) and Suppl. Sec. C.2).

Further relevant observations. We outline here further experiments that provide hints to the nature
of the observed failures and incapabilities. 1. Inability to revise wrong solutions. We experiment with
customized prompts to enable multi-turn self-verification and also conduct multi-turn interactions with
selected models to encourage those to revise their wrong solutions. In the majority of those attempts,
while eagerly agreeing to revise the solutions and check those for possible mistakes, models show
failure to properly detect mistakes and to revise wrong solutions (Suppl. Sec. H). 2. Reformulation
of AIW as relational SQL database problem. We make use of relational logic underlying the AIW
problem structure and prompt models to reformulate AIW into a correct relational SQL database
format, using a customized SQL-FORM prompt type. We observe that smaller scale models, and
also some larger scale ones, consistently fail to generate correct a relational SQL form. Some models
are on the contrary able to do so frequently, e.g., Mistral/Mixtral (Suppl. Sec. I) 3. Parameterized
version AIW-Param. We use a parameterized AIW formulation containing variables (N ,M ; or X ,Y )
for brothers and sisters instead of natural numbers. We again observe a failure of the majority of
the models to cope with this generic form, being unable to produce a correct generic solution, e.g.
C = M + 1 (Suppl. Sec. C.1). 4. Base model performance. We inspect the performance of base
model selection that claim strong function, e.g. Llama 2, Llama 3, Mistral/Mixtral by using AIW-base
prompt types compatible with base model function. We observe the same reality as with instruct
models, measuring strong collapse on AIW problem (Suppl. Sec. E. 5. In-context-learning (ICL) As
a shortcut solution in form of M + 1 exists for AIW problem, we do not expect from ICL to install
reasoning skills when confronted with solved examples of AIW problem instances. We execute the
experiment to check whether showing problem instances with natural numbers would enable solving
of a more general AIW-Param problem. We observe failure of models to do so (Suppl. Sec. J)
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4 Related work & limitations

Measuring LLMs capabilities. Since the seminal breakthroughs in language modelling [2, 3, 4],
measuring LLM capabilities became indispensable for evaluations and model comparison. To measure
how well a language model performs on reasoning, there exists a plethora of different standardized
reasoning benchmarks. These benchmarks can be roughly divided into categories by what exact
reasoning capability we want to test such as ARC [29], PIQA [30], GSM8K [31], HellaSwag [32],
MMLU [33] or WinoGrande [34]. Multiple works aim on improving reasoning performance of LLMs
as measured by those standardized benchmarks in various ways [27, 35, 36, 37, 38].

Finding weak spots in LLMs capabilities. Paralleling impressive progress shown by LLM research,
cautious voices have been raising concern about discrepancy between claimed capabilities as measured
by standardized benchmarks and true LLM reasoning skills by presenting carefully selected evidence
for model failures [12]. In response, the research community has been undertaking attempts to create
more challenging benchmarks like HELM [39] or BIG-bench [40]. These benchmarks also aimed
at properly testing generalization capabilities beyond memorization, in line with recent works that
pointed out high test dataset contamination due to large-scale pre-training on web-scale data [14, 15].

Similar in spirit to our work, multiple studies [13, 41, 42, 43, 44, 45] have shown breakdowns of
language models reasoning capabilities in different scenarios and lack of robustness to variation of
problem formulation. Other works were looking into particular reasoning failures like deficits in
causality inference [46, 47]. These works operate often with formalized, rather complex problems that
does not have simple common sense character. Here we show breakdown on a common sense problem
with very simple structure, which emphasizes a deficiency in basic reasoning. A key limitation of our
current approach is the lack of sufficient diversity in AIW problem variations. This can be addressed
in future work by systematic procedural instance generation for broader response evaluation.

5 Discussion & Conclusion

Using a very simple AIW problem formulation that can be easily solved by adults and arguably even
children, we observe here a striking breakdown of SOTA LLMs performance when confronted with
the task. This dramatic breakdown hints on serious deficits in basic reasoning capabilities in models
that are widely claimed to possess strong function and reasoning skills, often citing their performance
on a set of standardized benchmarks or the experience of various user groups or their creators. The
overall breakdown and strong fluctuation of observed performance across variations of the same
problem also hints at fundamental issues with the generalization capability of the models, which
echoes and confirms concerns expressed in number of previous works [48, 13, 15]

However, the evidence obtained in this study points to a more complex puzzling picture than a
straightforward story of out-of-distribution generalization failure for current SOTA LLMs. Albeit
observed collapse of reasoning and performance on AIW problem, accompanied by evident model
miscalibration and overconfidence, confabulations alongside incorrect answers, and inability to revise
wrong solutions, we see larger-scale models like GPT-4 and Claude 3 Opus coping with the AIW
problem, occasionally providing clearly correct reasoning backing up correct answers. Despite strong
fluctuations across AIW variations, such correct reasoning leading to correct answers appears, though
with strongly varying frequency. This is also the case for AIW+, where GPT-4 and Claude 3 Opus
suffer further breakdown, but still provide on very rare occasions correct reasoning-answer responses.
The same is true for the much less performant models that show poor or very poor ability to cope with
AIW task (e.g., Mistral/Mixtral, LLama 2/3, Dbrx instruct) - also those models manage to generate
on rare occasions correct reasoning-answer responses across AIW variations. We hypothesize that
generalization and core reasoning abilities are thus latently present in those models, as otherwise they
would not be able to generate such responses at all, as guessing correct answer including full correct
reasoning by accident in such cases is impossible. The fact that the correct reasoning responses
are rare and model behavior is not robust to problem variations demonstrates though deficiency to
exercise proper control over these capabilities. Investigating the highly interesting question of what
causes this deficiency is subject of future work.

What becomes quite clear through our study is the failure of current standardized benchmarks to
reflect true model reasoning capabilities and to reveal their weaknesses. As it is evident from Fig. 3
and Suppl. Tabs. 4, 5, many models claiming high standardized scores perform very poorly on AIW.
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At the same time, older models like LLama 2 70B with lower MMLU, ARC-c and GSM8K scores
outperform on AIW clearly those claiming much higher scores, e.g. Command R Plus which suffers
complete breakdown on AIW. This hints that model comparison using standardized benchmarks
might be seriously jeopardized. The appraisal for the smaller scale models, e.g. Mistral-7B or LLama
2/3 7/8B, is based to large extent on such standardized benchmarks coming close or even matching
larger scale models. We observe here however a severe breakdown for smaller scale models on AIW,
with a clear large gap to better performing models that all reside at larger scales. We hypothesize
here that the claimed strong functions of smaller scale models might be a mere illusion corroborated
by broken benchmarks that in their current state cannot offer a proper model comparison and thus
also cannot be used as downstream tasks for measuring important scaling laws.

We think that observations made in our study should serve as strong reminder that current SOTA
LLMs are not capable of sound, consistent reasoning, as shown here by their breakdown on even such
a simple task as the presented AIW problem, and enabling such reasoning is still subject of basic
research. This should be also a strong warning against overblown claims for such models beyond
being basic research artifacts to serve as problem solvers in various real world settings, which are
often made by different commercial entities in attempt to position their models as a strong mature
product for end-users (see for instance announcements and claims for Command R+ that breaks down
on AIW entirely, emphasizing its high value for "key business-critical capabilities", or "real-world
enterprise use cases" [25, 49, 50], and stressing the supposedly present core reasoning capabilities;
the same is true for many other commercial models that claim high product value).

Observed breakdown of basic reasoning capabilities, coupled with such public claims (which are also
based on standardized benchmarks), present an inherent safety problem. Models with insufficient
basic reasoning are inherently unsafe, as they will produce wrong decisions in various important
scenarios that do require intact reasoning. Current standardized reasoning benchmarks and claims
based on those create illusion of reasoning capabilities that are actually absent, and making it even
worse - such models are overconfident, insisting on their wrong answers being correct, and producing
highly persuasive and suggestive explanations for their wrong responses, which might mask mistakes
for the end-users due to partly plausible sounding text (see Suppl. Sec. G for examples of such
confabulations). To ensure safety, public claims should be based only on those scientific evaluations
that properly measure the model’s capabilities to reason, while basic research has to be performed
using such benchmarks to endow future models with sufficient basic reasoning skills.

To perform basic research in direction of improving currently unsatisfactory reasoning skills of SOTA
LLMs, it is thus important that whole pipeline of model creation - dataset composition and dataset
itself, source code for training, the trained model itself, the standardized benchmarking procedure -
is fully open and reproducible. Models that has open weights only do not allow for proper analysis
of what might have gone wrong during training that might have resulted in broken reasoning skills
- for instance, changing the dataset mix or training procedure itself. Closed models accessible via
API only often do not even allow proper evaluation, as for instance default settings such as system
prompt and other inference hyperparameters may remain invisible to independent evaluation parties.
We think therefore that proper progress in studying how to evaluate and install proper reasoning
skills in the future models necessarily requires full training pipeline of a model - especially the
often neglected dataset composition - to be open-source (see recent work on FineWeb [51] for an
encouraging example of such an open dataset composition pipeline), as otherwise the claims about
reasoning capabilities will stay unsubstantiated and intrasparent.

Facing these initial findings, we would like to call upon scientific and technological ML community
to work together on providing necessary updates of current LLM benchmarks that obviously fail to
discover important weaknesses and differences between the studied models. Such updates might
feature sets of problems similar to AIW studied here - simple, to probe specific kind of reasoning
deficiency, but customizable, thus offering enough combinatorial variety to provide robustness against
potential contamination via memorization. We think that strong, trustful benchmarks should follow
Karl Popper’s principle of falsifiability [52] - not trying to confirm and highlight model’s capabilities,
which is tempting especially in commercial setting, but in contrast do everything to break model’s
function, highlighting its deficits, and thus showing possible ways for model improvement, which is
the way of scientific method. Building such reasoning benchmarks in common effort will give us a
tool both to protect us from overblown claims about model function and to properly navigate the path
for improvement of the currently still unsatisfactory state.
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Supplementary.

A Additional overview for performed experiments

Here we gather additional helpful information on the procedures around the executed experiments.
To provide overview over origin of core tested models used for the AIW experiments, we list those in
Tab. 1

Table 1: Names, origin and versioning of core test models used in the experiments.

Name Origin Released Open Weights Sources

GPT-4o-2024-05-13 OpenAI 13.05.2024 No [7, 53, 54]
GPT-4-turbo-2024-04-09 OpenAI 09.04.2024 No [7, 55]
GPT-4-0125-preview OpenAI 25.01.2024 No [7, 55]
GPT-4-0613 OpenAI 13.06.2023 No [7, 55]
GPT-3.5-turbo-0125 OpenAI 24.01.2024 No [56, 57, 58]
Claude-3-opus-20240229 Anthropic 04.03.2024 No [59, 22]
Claude-3-sonnet-20240229 Anthropic 04.03.2024 No [59, 22]
Claude-3-haiku-20240307 Anthropic 04.03.2024 No [59, 22]
Gemini 1.0 Pro Google 06.12.2023 No [60, 23]
gemma-7b-it Google 05.04.2024 (v1.1) Yes [61, 62]
gemma-2b-it Google 05.04.2024 (v1.1) Yes [61, 62]
Mistral-large-2402 Mistral AI 26.02.2024 No [63, 64]
Mistral-medium-2312 Mistral AI 23.12.2023 No [63, 64]
Mistral-small-2402 Mistral AI 26.02.2024 No [63, 64]
open-mixtral-8x22b-instruct-v0.1 Mistral AI 17.04.2024 Yes [63, 65]
open-mixtral-8x7b-instruct-v0.1 Mistral AI 11.12.2023 Yes [63, 66]
open-mistral-7b-instruct-v0.2 Mistral AI 11.12.2023 Yes [10, 63, 67]
Command R+ Cohere 04.04.2024 Yes [49, 68]
Dbrx Instruct Mosaic 27.03.2024 Yes [24]
Llama 2 70B Chat Meta 18.07.2023 Yes [69, 9]
Llama 2 13B Chat Meta 18.07.2023 Yes [69, 9]
Llama 2 7B Chat Meta 18.07.2023 Yes [69, 9]
Llama 3 70B Chat Meta 18.04.2024 Yes [70, 71]
Llama 3 8B Chat Meta 18.04.2024 Yes [70, 71]
Qwen 1.5 1.8B - 72B Chat Alibaba 04.02.2024 Yes [72, 73]

B Prompt types and variations

For testing the model dependence on input prompt as well as robustness towards problem variation
while solving AIW and AIW+ tasks we used three main prompt types - STANDARD (original prompt
with answer formatting instructions), THINKING (prompt that encourages thinking with answer
formatting instructions) and RESTRICTED (prompt that instructs model to output only formatted
answer and nothing else). For testing the models’ robustness, we try different prompt variations (AIW
Variations, see Sec, 2.1, i.e. keeping the same problem structure but varying numbers and ordering of
brothers and sisters, or names of persons, involved.

We employ further prompt types to probe various aspects of model behavior. For instance, to facilitate
thoughtful and accurate answering, we use SCIENTIST prompt type. For evoking expression of
confidence estimate in the provided solution, we employ CONFIDENCE prompt type.

See Tab. 2 (for AIW problem) and Tab. 3 (for AIW+ problem) for more details and full prompt
description.

C Model behavior on AIW and AIW+ problem

Here we report further details on model behavior as observed on AIW and AIW+ problem.
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Table 2: AIW prompt types and prompt variations for AIW.

Prompt
ID

Prompt Prompt Type Variation

11 Alice has 4 brothers and she also has 1 sister. How many sisters does Alice’s
brother have? Solve the problem by taking care not to make any mistakes. Ex-
press your level of confidence in the provided solution as precisely as possible.

CONFIDENCE 4
(AIW)

40 Alice has 4 sisters and she also has 1 brother. How many sisters does Alice’s
brother have? To solve the problem, approach it as a very intelligent, accurate
and precise scientist capable of strong and sound reasoning. Provide the solution
to the problem by thinking step by step, double checking your reasoning for
any mistakes, and based on gathered evidence, provide the final answer to the
problem in following form: "### Answer: ".

SCIENTIST 3
(AIW)

53 Alice has 3 brothers and she also has 6 sisters. How many sisters does Alice’s
brother have? To answer the question, DO NOT OUTPUT ANY TEXT EX-
CEPT following format that contains final answer: "### Answer: ".

RESTRICTED 1
(AIW)

54 Alice has 2 sisters and she also has 4 brothers. How many sisters does Alice’s
brother have? To answer the question, DO NOT OUTPUT ANY TEXT EX-
CEPT following format that contains final answer: "### Answer: ".

RESTRICTED 2
(AIW)

55 Alice has 3 brothers and she also has 6 sisters. How many sisters does Alice’s
brother have? Solve this problem and provide the final answer in following
form: "### Answer: ".

STANDARD 1
(AIW)

56 Alice has 2 sisters and she also has 4 brothers. How many sisters does Alice’s
brother have? Solve this problem and provide the final answer in following
form: "### Answer: ".

STANDARD 2
(AIW)

57 Alice has 3 brothers and she also has 6 sisters. How many sisters does Alice’s
brother have? Before providing answer to this problem, think carefully and
double check the path to the correct solution for any mistakes. Provide then the
final answer in following form: "### Answer: ".

THINKING 1
(AIW)

58 Alice has 2 sisters and she also has 4 brothers. How many sisters does Alice’s
brother have? Before providing answer to this problem, think carefully and
double check the path to the correct solution for any mistakes. Provide then the
final answer in following form: "### Answer: ".

THINKING 2
(AIW)

63 Alice has 4 sisters and she also has 1 brother. How many sisters does Alice’s
brother have? Solve this problem and provide the final answer in following
form: "### Answer: ".

STANDARD 3
(AIW)

64 Alice has 4 sisters and she also has 1 brother. How many sisters does Alice’s
brother have? Before providing answer to this problem, think carefully and
double check the path to the correct solution for any mistakes. Provide then the
final answer in following form: "### Answer: ".

THINKING 3
(AIW)

65 Alice has 4 sisters and she also has 1 brother. How many sisters does Alice’s
brother have? To answer the question, DO NOT OUTPUT ANY TEXT EX-
CEPT following format that contains final answer: "### Answer: ".

RESTRICTED 3
(AIW)

69 Alice has 4 brothers and she also has 1 sister. How many sisters does Alice’s
brother have? Solve this problem and provide the final answer in following
form: "### Answer: ".

STANDARD 4
(AIW)

70 Alice has 4 brothers and she also has 1 sister. How many sisters does Alice’s
brother have? Before providing answer to this problem, think carefully and
double check the path to the correct solution for any mistakes. Provide then the
final answer in following form: "### Answer: ".

THINKING 4
(AIW)

71 Alice has 4 brothers and she also has 1 sister. How many sisters does Alice’s
brother have? To answer the question, DO NOT OUTPUT ANY TEXT EX-
CEPT following format that contains final answer: "### Answer: ".

RESTRICTED 4
(AIW)
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Table 3: AIW+ prompt types and prompt variations.

Prompt
ID

Prompt Prompt Type Variation

91 Alice has 3 sisters. Her mother has 1 sister who does not have
children - she has 7 nephews and nieces and also 2 brothers.
Alice’s father has a brother who has 5 nephews and nieces in
total, and who has also 1 son. How many cousins does Alice’s
sister have? Solve this problem and provide the final answer in
following form: "### Answer: ".

STANDARD 1 (AIW+)

92 Alice has 3 sisters. Her mother has 1 sister who does not have
children - she has 7 nephews and nieces and also 2 brothers.
Alice’s father has a brother who has 5 nephews and nieces in total,
and who has also 1 son. How many cousins does Alice’s sister
have? Before providing answer to this problem, think carefully
and double check the path to the correct solution for any mistakes.
Provide then the final answer in following form: "### Answer: ".

THINKING 1 (AIW+)

93 Alice has 3 sisters. Her mother has 1 sister who does not have
children - she has 7 nephews and nieces and also 2 brothers.
Alice’s father has a brother who has 5 nephews and nieces in
total, and who has also 1 son. How many cousins does Alice’s
sister have? To answer the question, DO NOT OUTPUT ANY
TEXT EXCEPT following format that contains final answer:
"### Answer: ".

RESTRICTED 1 (AIW+)

C.1 Parameterized AIW problem (AIW-Param)

We were interested to see where models can cope with this more generic problem formulation that
does not use explicit natural numbers. We thus created a parameterized version of the AIW problem
has the following form: "Alice has N brothers and she also has M sisters. How many sisters does

Alice’s brother have?". In this instance, the correct answer would be M + 1.

We test several models on this task where we have to manually inspect model responses, as simple
automated parsing fails here in contrast to the AIW problem with explicit natural numbers. We had
to identify the responses that were parsed correctly and if not, provide manual input on whether
the response was correct. We also inspected whether models had right reasoning to arrive to final
answer as it occurs for this problem type more often that automated response parsing assigns a correct
response to the actual wrong reasoning. We provide additional metadata flags for the raw data to
indicate whether a sample was manually inspected, and also to signal whether inspected reasoning
was correct - or if it’s impossible to say in situations when the response is too short, but still correct,
to mark reasoning correctness as "unknown". Similar to standard AIW problem, we observe models
performing also poorly on this more generic version (see Fig. 14)

C.2 AIW+ problem

We formulate AIW+ problem to offer a higher degree of difficulty compared to original AIW, while
having same relational logic appeal. AIW+ problem has following form: "Alice has 3 sisters. Her

mother has 1 sister who does not have children - she has 7 nephews and nieces and also 2 brothers.

Alice’s father has a brother who has 5 nephews and nieces in total, and who has also 1 son. How

many cousins does Alice’s sister have?".

The solution to AIW+ problem is harder to obtain than the solution to common sense AIW with very
simple structure. Solving AIW+ requires taking different paternal sides, that of mother and father,
and carefully calculating the number of cousins, taking care of subtracting Alice and her sister, and
summing up the total number of cousins from both sides, for instance: on the mother side: 7 (total
nephews and nieces) - 4 (Alice and her sisters) = 3 cousins; on the father side: 5 (total nephews and
nieces) + 1 (own son of the father’s brother) - 4 (Alice and her sisters) = 2 cousins; summing up 3 + 2
= 5 cousins which Alice and any of her sisters have.
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Table 4: Performance of tested model on MMLU and AIW problems. MMLU scores obtained from
[74, 75, 22].

Model MMLU Correct resp.
rate (AIW)

Correct resp.
rate (AIW+)

gpt-4o-2024-05-13 0.887 0.649 0.015
claude-3-opus-20240229 0.868 0.431 0.038
gpt-4-0613 0.864 0.370 0.038
llama-2-70b-chat 0.639 0.300 0.000
llama-2-7b-chat 0.548 0.128 0.000
dbrx-instruct 0.737 0.106 0.021
gpt-4-turbo-2024-04-09 0.805 0.098 0.008
llama-3-8b-chat 0.671 0.050 0.000
llama-3-70b-chat 0.801 0.049 0.036
qwen1.5-1.8b-chat 0.459 0.048 0.000
gemma-2b-it 0.376 0.045 0.000
llama-2-13b-chat 0.658 0.027 0.000
qwen1.5-4b-chat 0.556 0.025 0.000
claude-3-sonnet-20240229 0.790 0.013 -
mistral-large-2402 0.812 0.012 0.021
gpt-3.5-turbo-0125 0.700 0.009 -
gemini-pro 0.718 0.008 -
open-mixtral-8x22b 0.778 0.007 0.021
open-mistral-7b 0.642 0.006 0.000
qwen1.5-7b-chat 0.616 0.006 0.000
claude-3-haiku-20240307 0.752 0.004 -
open-mixtral-8x7b 0.718 0.001 0.007
command-r-plus 0.757 0.000 0.007
qwen1.5-14b-chat 0.685 0.000 0.000
gemma-7b-it 0.535 0.000 0.000
qwen1.5-72b-chat 0.775 0.000 0.000
qwen1.5-32b-chat 0.750 0.000 0.000

AIW+ can be thus considered as more complex because it involves more entities (Alice her sisters,
parents, uncles and aunts as well as her cousins), more types of relationships between them including
a hierarchy and distractors (eg, 2 brothers of mother’s sister) that has nothing to do with correct
solution to the problem.

C.3 Further details on model performance and behavior

To understand if the performance on AIW and AIW+ correlates with standardized benchmarks, we
compare correct response rates for tested models with their performance on (Massive Multitask
Language Understanding) MMLU benchmark (Table 4). We see that standardized benchmarks are
strongly decoupled from AIW and AIW+ performance and cannot predict those - high performance
on MMLU can go together with very low performance on AIW or AIW+ (like in case of Command R+
and many other models), while lower performance on MMLU may be coupled to better performance
than majority of tested models in AIW, as it is in the case of Llama 2 70B Chat. In this way, ranking
given by standardized benchmarks in terms of reflecting relative capabilities of the models to reason
cannot be relied on.

For the majority of the tested models, correct response rates for both AIW (Fig. 8) and AIW+
(Fig. 15) are extremely low. At the same time, many of those models score high at standardized
benchmarks and are thus considered strongly capable. Some of those models cannot solve AIW task
not a single time. We make sure that number of samples collected for each model is approximately
of the same order of magnitude, avoding distortions due to difference in sampling rates Fig. 12.
Different models have quite different output lengths (see Fig. 13 and Fig. 17) within same prompt
type. For example, RESTRICTED prompt obviously forces models to output less tokens rather than
STANDARD or THINKING which encourages models to longer outputs. For instance models like
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Table 5: Performance of tested model on MMLU, Hellaswag, ARC-c, GSM8k and AIW problems.

Model MMLU Hellaswag ARC-c GSM8k Correct
resp. rate
(AIW)

Correct
resp. rate
(AIW+)

gpt-4o-2024-05-13 0.89 - - - 0.65 0.02
claude-3-opus-
20240229

0.87 95.40 96.40 95.00 0.43 0.04

gpt-4-0613 0.86 95.30 96.30 92.00 0.37 0.04
llama-2-70b-chat 0.64 85.90 64.60 56.80 0.30 0.00
llama-2-7b-chat 0.55 77.10 43.20 25.40 0.13 0.00
dbrx-instruct 0.74 88.85 67.83 67.32 0.11 0.02
gpt-4-turbo-2024-04-
09

0.80 - - - 0.10 0.01

llama-3-8b-chat 0.67 78.55 60.75 79.60 0.05 0.00
llama-3-70b-chat 0.80 85.69 71.42 93.00 0.05 0.04
qwen1.5-1.8b-chat 0.46 46.25 36.69 38.40 0.05 0.00
gemma-2b-it 0.38 71.40 42.10 17.70 0.04 0.00
llama-2-13b-chat 0.66 80.70 48.80 77.40 0.03 0.00
qwen1.5-4b-chat 0.56 51.70 40.44 57.00 0.02 0.00
claude-3-sonnet-
20240229

0.79 89.00 93.20 92.30 0.01 -

mistral-large-2402 0.81 89.20 94.20 81.00 0.01 0.02
gpt-3.5-turbo-0125 0.70 85.50 85.20 57.10 0.01 -
gemini-pro 0.72 84.70 - 77.90 0.01 -
open-mixtral-8x22b 0.78 89.08 72.70 82.03 0.01 0.02
open-mistral-7b 0.64 84.88 63.14 40.03 0.01 0.00
qwen1.5-7b-chat 0.62 59.38 52.30 62.50 0.01 0.00
claude-3-haiku-
20240307

0.75 85.90 89.20 88.90 0.00 -

open-mixtral-8x7b 0.72 87.55 70.22 61.11 0.00 0.01
command-r-plus 0.76 88.56 70.99 70.74 0.00 0.01
qwen1.5-14b-chat 0.69 63.32 54.27 70.10 0.00 0.00
gemma-7b-it 0.54 81.20 53.20 46.40 0.00 0.00
qwen1.5-72b-chat 0.77 68.37 65.36 79.50 0.00 0.00
qwen1.5-32b-chat 0.75 66.84 62.97 77.40 0.00 0.00

GPT-4-0124-preview or Command R Plus have rather short responses independent of prompt type
compared to other models.

We also observe strong fluctuations of models behavior across AIW variations (as shown in the
Fig. 11). It reveals that on average better performing models like GPT-4-0613 are not robust to
variations introduced into the AIW problem while keeping the very same problem structure. Case of
GPT-4-0613 is especially severe, as the model collapses from correct response rate 1 to 0 between
AIW variations 4 and 3 (see Suppl. Tab. 2 for exact formulation of AIW variations). Also GPT-4o,
GPT-4-Turbo, Claude 3 Opus and Llama 2 7B and 70B show strong discrepancies. Such behavior
hints again on deficiency in basic reasoning capabilities that results in the observed lack of robustness -
AIW variations introduce slight changes to numbers and ordering of entities in the very same problem
that should not have been a challenge to handle properly, when core reasoning capabilities were
intact.

We also can see (Fig. 9 and Fig. 10) strong fluctuations when comparing STANDARD and THINK-
ING vs RESTRICTED prompt type. While it is expected the performance might drop when forcing
models to invest less compute into the output generation, so switching from STANDARD or THINK-
ING to RESTRICTED prompt type (Fig. 9, strong drop observed for Claude 3 Opus when switching
from STANDARD to RESTRICTED), we also see drops in the other unexpected direction, for instance
for Claude 3 Opus, GPT-4o, Llama 2 70B or Dbrx Instruct, when switching from RESTRICTED
to STANDARD or THINKING prompt type (Fig. 10). Such drops may hint that available compute
is not properly used for correct reasoning and indicate lack of robustness, as a robust model should
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only benefit from increasing amount of compute. A robust model that already performs well with
smaller compute amount on RESTRICTED prompt type should only improve when switching to
STANDARD or THINKING prompt types with more compute available for producing output. This
also raises question whether in those cases where we observe short responses on RESTRICTED
prompt type to contain correct final answers we actually observe results due to proper reasoning.
Breakdown on STANDARD prompt type for the very same problem formulation may indicate that
numbers obtained on RESTRICTED prompt type are just consequence of a given AIW variation that
induces a strong dominance for a particular number to be generated on the output that does not have
necessarily any connection to the actual problem solution and is not a result of reasoning.

To make sure that our results correspond to true model performance and not distorted by wrong
automatic response parsing, for AIW+ we manually inspected all models responses considered only
the responses that have both correct answer and correct reasoning. If reasoning quality is not clear,
for instance in those cases where answer is correct but there is not explanation provided (this is often
the case for short answers), we introduce a metadata flag into raw data ("correct_reasoning"), which
we set in manual inspection to "unknown" in such cases.

We observe (see Fig. 15) an even stronger further collapse across all tested models on AIW+ compared
to AIW (see Fig. 8). All models show poor performance well below p = 0.1. Remarkably, GPT-4O
that was showing the best performance on AIW (p > 0.6), collapses dramatically on AIW+ close to 0.
AIW+ is clearly harder than AIW, which was made simple by intention. However, models claiming
strong reasoning should be able to solve it, as it does not involve any higher level logic or math. This
is though not the case for any current SOTA LLMs as our evidence suggests.

Standardized benchmarks failure. In Section 3.1, we observe failure of standardized reasoning
benchmarks to measure reasoning skills of SOTA LLMs by noting significant disparity between
the model’s performance on the AIW problem and the outcomes on conventional standardized
benchmarks, taking MMLU as representative examples. Here, we confirm this finding on further
standardized reasoning benchmarks like MATH, ARC-c, GSM8K and Hellaswag (Suppl. Tab. 5).
We provide plots visualizing failure of these standardized benchmarks, reflected in strong mismatch
between high benchmark scores reported by many models and the low correct response rates they
obtain on AIW (which in some cases is 0 for models with high standardized benchmark scores), in
Figures 4, 7, 5, 6.

D Examples of correct and failed responses

We provide all collected model responses we obtained during this study in the collected_responses
folder in the AIW repo. Here we also showcase some correct and incorrect answers as an example
(see Figs. 18, 21, 19, 20.

E Base model experiments

On top of our main experiments with instruction tuned models, we have considered to evaluate
selected base models on AIW to see whether there is any striking difference between instruction
and base model ability to solve the AIW problem. For these experiments we considered currently
available bases of several models we have already tested: Mixtral 8x7b, Mixtral 8x22b, Mistral 7b,
LLaMA 2 70b, LLaMA 2 13b, LLaMA 2 7b. We used the following prompt for base models: "###
Problem: ... ### Answer:". We see in line with what we observe on instruct models that also base
models perform poorly on AIW problem. We observe that Mistral 7b base shows higher correct
response rate on average across all tested base models (see Fig. 22, while our observations for Mistral
7B instruction model do not show any difference to other similarly poor performing models unable to
deal with AIW. We do not see any remarkable differences for base model case compared to our main
observations made with instruction models.

F Lack of certainty calibration and overconfidence in wrong answers

For a strong model, one important characteristic is its uncertainty calibration - how well model’s
estimation of certainty about correctness of the provided response matches with true quality of the
response, being correct or incorrect. A well calibrated model should assign high certainty of being
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Figure 4: Discrepancy between the AIW correct response rate and the MATH average score, indicating
the limitation of standardized benchmark MATH in accurately assessing and comparing basic
reasoning capabilities of models. Numerous models, such as Command R+, exhibit a stark contrast
in performance, scoring zero on AIW while achieving high scores on MATH.

correct where corresponding responses are indeed correct, and should assign high uncertainty to those
responses that model might signal as correct, while the provided response is actually incorrect.

In ideal scenario, if LLM cannot correctly solve the AIW problem, it should at least be capable
of signalling high uncertainty about the provided incorrect solution. We used our CONFIDENCE
prompt type (see Table 2 for AIW problem to see how confident tested models are in their wrong
solutions. From our experiments we can see that LLMs most of the time express high certainty
even if their answers are completely wrong and thus have strong overconfidence (see Fig. 28). The
models also use highly persuasive tone to argue for the expressed certainty and correctness of the
provided wrong solutions, using words like "highly confident", "definitive answer", or "accurate and
unambiguous". We see also strong overconfidence expressed in multi-turn interactions with models,
where user is insisting on solution provided being incorrect, and observe there high resistance of
models to revise their decisions, which was already referred to as "stubbornness" in other works [20]
(see Suppl. Sec. H and also data provided in the AIW repo)

G Confabulations as back up for wrong answers

In our experiments we observe frequent tendency of those tested models that show strong reasoning
collapse and produce wrong answers for both AIW and AIW+ problems to generate at the same time
persuasive sounding pseudo-explanations to back up their incorrect answers. We term here such
pseudo-explanations confabulations, and present a selection of those as examples.

Such confabulations can contain mathematical calculations or other logic-like expressions and
operations that make little or absolutely no sense given the problem to be solved, see examples for
Olmo-7B, Fig. 29 and Command R+, Fig. 31.

Further confabulations make use of various social and cultural norm specific context to argue for the
posed problem to be inappropriate to solve or to provide non-sense arguments for various incorrect
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Figure 5: Limitation of the standardized benchmark GSM8k in accurately reflecting and comparing
basic reasoning capabilities of models, as illustrated by the stark discrepancy between the AIW correct
response rate and the GSM8k average score. Notably, the majority of tested models exhibit low
performance on AIW problems while achieving relatively high scores on GSM8k, a graduate-level
math benchmark for large language models. Among models with slightly better calibration are
Claude Opus and GPT 4 that outperform other models on AIW, which coincides with their high
GSM8k scores. Llama 2 70b also shows better calibration, where its modest AIW performance
matches its modest GSM8k score. In contrast, models like Mistral Large, Gemini Pro, Dbrx Instruct,
or Command R+, while scoring high on GSM8k, show breakdown on AIW (Command R+ has 0
correct response rate, Mistral Large and Gemini Pro 0.01, Dbrx Instruct 0.11, see also Suppl. Tab. 4)

answers. There are many such examples that we have observed, we present here only a small
selection.

CodeLlama-70B-instruct for instance seems to be specifically prone to claim ethical or moral reasons
for not addressing the problem correctly, in the presented example inventing out of nowhere a person
with Down syndrome and then pointing out that question has to be modified to be addressed due to
potential perpetuation of harm towards individuals or groups, which has nothing to do with original
task, Fig. 30.

Another example are confabulations provided by Command R Plus. These confabulations use
concepts of gender identity such as non-binary gender or concepts related to inclusion or to cultural
context dependent family identification in the provided wrong reasoning leading to incorrect answers.
In the attempt to solve the problem, the model first fails to provide obvious common sense solution
and then goes on to describe potential scenarios where brothers and sisters may self-identify as
non-binary, although providing information on brothers and sisters in the problem usually means
via common sense that those persons self-identify correspondingly to their known status as brother
or sister (while Alice is clearly identified via "she" pronoun). Model thus clearly fails to grasp that
problem structure has nothing to do with the social and cultural norms. The solutions derived by the
model from considering those factors that are far beyond Occam’s razor and common sense inherent
to the simple AIW problem all lead to wrong answers and generate more confusion, while again
keeping the persuasive tone that suggests that model is on some right path to provide the correct
solutions (Fig. 32)

24



Figure 6: Limitation of the standardized benchmark Hellaswag in accurately assessing and comparing
basic reasoning capabilities of models, as evidenced by the significant discrepancy between the AIW
correct response rate and the Hellaswag average score.

Figure 7: Failure of standardized benchmark ARC-c to properly reflect and compare model basic
reasoning capabilities as shown by strong discrepancy between AIW correct response rate vs ARC-c
average score.
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Figure 8: Collapse of most SOTA LLMs on AIW problem. AIW correct response rate, averaged
across AIW variations with prompt types THINKING and STANDARD. Only 5 models manage to
show rates above p = 0.2: GPT-4o, Claude 3 Opus, GPT-4-0613, Llama 2 70B Chat and GPT-4-
0125-preview (GPT4-Turbo). Llama 2 70B Chat is the only open-weights model in this set. The rest
either shows poor performance below p = 0.15, or even collapses entirely to 0. Among those models
collapsing to 0 are many which are claimed to be strong, eg larger scale GPT-3.5, Mixtral 8x7B and
8x22B, Command R Plus, Qwen 1.5 72B Chat and smaller scale Gemma-7b-it, Mistral Small and
Mistral Medium.

For more illustrative examples, see the raw data on interactions with the models collected in AIW
repo)

H Inability to revise wrong solutions

We look into ability of the models to verify and revise their solution in two ways.

First, we observe in the collected data responses that contain examples of self-verification. Those
can arise following from THINKING prompt that encourages to double-check the solution, or they
appear by following customized prompts that request to produce different solutions and check which
one is to prefer, or those that appear entirely unprompted (An example of a customized prompt that
encourages to produce various solutions and evaluate those is "Look at the problem step by step and

formulate 3 different solutions that come to different results. Then evaluate which solution seems

to be the best and then come to a definitive final statement.", see also Fig. 31. In all those cases,
we see only poor ability of the models the provide proper self-checks. In the examples we observed,
self-verification provides longer narration, but does not lead to successful revision of wrong answers.

Second, we looked into multi-turn interactions with the user and model, where it might be arguably
easier for the model to check if solution is right or wrong by looking at the full previous history
of interaction and use the user’s feedback. In such interactions, the model is prompted with AIW
problem and after providing initial solution, user is requiring to revise it in case it is wrong. In
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Figure 9: Strong fluctuations of AIW correct response rate STANDARD vs RESTRICTED prompt
type (here on example of AIW Variation 2). Claude 3 Opus, while performing well on STANDARD,
drops strongly on RESTRICTED, where output is restricted to be short. This might be expected, as
limiting compute for producing solution can affect function quality and deteriorate the result.

majority of the observed interactions, we see that while models eagerly agree to revise the solutions
and proceed for checking those for possible mistakes, they usually show failure to properly detect
mistakes and to revise wrong solutions. Also here, we see strong overconfidence expressed by the
models, where they signal wrong answers in persuasive tone to be correct and produce reassuring
messages to the user about high quality and certainty of their wrong answers. Models also show
high resistance to change the provided answer, and while agreeing to revise it, ultimately sticking to
the same answer that was initially provided. Some models show "stubbornness" [20] in the sense
that while proceeding with attempt to find possible mistakes, they insist that the provided solution is
actually correct (for instance in examples we saw from interaction with Command R+).

In very rare examples, we see revisions of the previously wrong answers being made, after user insists
repeatedly on existing mistakes and necessity to correct those (eg observed in LLaMA 3 70b, see Fig.
33 )

For collected multi-turn conversations, see AIW repo.

I Reformulation of AIW problem as relational SQL database problem

Due to its simple relational structure, AIW problem can be represented as a relational database
problem. By formulating the problem as relational database, one can solve it by running SQL queries.
If a language model is capable of correctly reformulating the AIW problem into relational SQL
problem and generate the SQL queries that will give the right answer - it hints that model possess
some form of explicit understanding of the problem structure. For example, in the Fig. 34, we can
see that Mixtral 8x22B instruct v0.1 is able to correctly generate SQL queries for table creation,
population and solution of the problem. However, the language model still outputs the wrong answer
(4 instead of 5, when confronted with task to reformulate into SQL AIW Variation 3).

Moreover, if providing those generated queries back on the model’s input - importantly, excluding
text description model has generated alongside the SQL query, so that only SQL query is provided
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Figure 10: Strong fluctuations of AIW correct response rate STANDARD vs RESTRICTED prompt
type (here on example of AIW Variation 3). Claude 3 Opus, GPT-4o, Llama 2 70B and Dbrx Instruct
have good performance on RESTRICTED, strongly dropping on STANDARD. Additional compute
that can be used to produce longer output in STANDARD does not bring benefit to the model function
here, which hints that also reasoning performed on RESTRICTED might be also broken and the
correct final answer is just an accident

on the input - and asking the model what would be the result of running the generated pure SQL
query, the model will be able to provide the correct final answer to AIW problem (5 in that particular
example), and that consistently with high chance. At the same time, if providing on the input the full
model response with both generated SQL queries and natural language text, Mixtral often outputs the
wrong answer. This means that the model has some understanding of both the AIW problem and the
SQL, but for some reason it is not able to connect everything together. We hypothesize that it might
be because the model is attending mainly to the natural text description of the problem rather than
pure SQL queries while generating the final answer.

In conclusion, we see that some models possess ability to capture the problem’s structure as evident
by their ability to reformulate it as explicit formal SQL query that reflects formal relational problem
structure correctly. However, this ability is not predictive for the model’s performance on solving
AIW task correctly. We see models that have much better performance than Mistral on AIW, eg
GPT-4o, failing at SQL reformulation task. Another observation is that none of smaller scale models,
eg Mistral-7B, also fail on the SQL reformulation task, hinting that they cannot cope with discovering
the structure of the AIW problem.

J In-context learning experiments

As a sanity test, we perform few experiments with in-context learning (ICL) using base models. As
the AIW problem has simple shortcut solution in form of M + 1, where M is number of sisters, it is
expected that ICL, if few examples of AIW problem are presented in the input, will find and use this
shortcut to solve the new examples. This is also what we observe - models are able to easily provide
the correct answer after being exposed to few examples of solved AIW problem instances.

To confirm that the solution obtained by ICL has no strong reasoning behind and uses the shortcut,
we alter the query AIW problem that follows the presented AIW examples such that M + 1 is not
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Figure 11: Strong fluctuations of AIW correct response rate on AIW variations (here on example
of AIW Variation 3 vs. 4, STANDARD prompt type). GPT-4-0613 collapses from correct response
rate 1 to 0 between variations. Also GPT-4o, GPT-4-Turbo, Claude 3 Opus and Llama 2 7B and
70B show strong discrepancies. Models for which a particular color is entirely omitted have zero
performance on the AIW variation with corresponding color (with exception of GPT-4-0613 on the
very top, which has correct response rate of 1 on AIW Variation 4, prompt ID 69, and thus also have
vanishing color bars for both variations.

a valid solution anymore (eg by asking number of brothers of Alice’s sister, which is just equal to
number of brothers given in the problem description). We observe the models sticking to shortcut
M + 1, which hints that no proper reasoning was instantiated by ICL (Fig. 35).

We also present the AIW-param problem (see Suppl. Sec. C.1 featuring variables N,M for brothers
and sisters quantities as query following AIW examples with explicit natural numbers, to see whether
models can come up with generalized solution M +1 as response. We observe frequent failure of the
models to do so. While in some occasions (as observed for instance for Llama 3 70B), the correct
response M + 1 is generated, in other frequent occasions, either incorrect responses containing
expressions with variables N,M are produced (eg, N + M , M ), or there are incorrect responses
featuring explict natural numbers. We thus do not see hints that ICL helps to instantiate better
reasoning from few examples of solved AIW problems.
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Figure 12: AIW Average number of responses per model for each prompt type (4 AIW variations
per prompt type.). Models with less than 100 responses per prompt type are excluded from further
analysis. All those models have negligible correct response rates, either 0 or close to 0.
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Figure 13: Average length (on characters) of responses per model for each AIW prompt variation.
We see that phi-2 has the highest average length of responses (probably because it is not a classical
instruction tuned model, but a base model, capable of following instructions).
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Figure 14: AIW-param correct response rate for all tested models. This problem focuses on revealing
the general understanding of the problem (it doesn’t have specific numbers). The largest SOTA
LMs like GPT-4 or Claude 3 Opus have better correct response rates (older GPT-4 versions showing
highest rates here, while GPT-4o drops strongly below p = 0.05; Claude 3 Opus drops as well below
p = 0.1), their gap to other models that perform significantly poorer having rates close to 0 is large.
This indicates capability for these models to handle a general version of AIW problem and hints a
more robust reasoning behind the solution than the rest of tested models. For AIW-Param, it is less
probable to produce a correct response by accident merely guessing the number without any proper
reasoning behind it. Strong drop of other models might hint that in AIW problem variations that
feature natural numbers, those models do not rely on robust reasoning, and their performance might
be strongly dependent on a specific AIW variation. This we observe for instance for Llama 2 70
B that show strong performance deterioration here falling almost to 0, while also showing strong
performance fluctuation depending on AIW variation, see App. Fig. 11

• Jenia Jitsev: led the project. Created further problem variations. Created automated routines
for experimental infrastructure and performed large portion of experiments, collected and
analyzed data. Wrote the manuscript.
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Figure 15: AIW+ correct response rates for the tested models. Compared to AIW, there is further
strong collapse across all models, shown poor performance well below p = 0.1. Remarkably, GPT-4o
that was showing the best performance on AIW (p > 0.6), collapses dramatically on AIW+ close to
0. AIW+ is clearly harder than AIW that was made simple by intention. However, models claiming
strong reasoning should be able to solve it, as it does not involve any higher level logic or math. This
is though not the case for any current SOTA LLMs.
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Figure 16: AIW+ Average number of responses per model for each prompt variation.
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Figure 17: AIW+ Average length (on characters) of responses per model for each prompt variation.
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Alice has 4 sisters and she also has 1 brother. How many sisters does Alice's brother have? Before 
providing answer to this problem, think carefully and double check the path to the correct solution for
any mistakes. Provide then the final answer in following form: \"### Answer: \"

Let's think through this problem step by step:  
1. Alice has 4 sisters and 1 brother.
 2. Alice's brother is part of the same family as Alice. 
3. All of Alice's sisters are also sisters to her brother. 
4. Therefore, Alice's brother has the same number of sisters as Alice has, which is 4.  
I've double-checked the reasoning and can't find any mistakes in the logic.  
### Answer: Alice's brother has 4 sisters

Claude 3 Opus

Human

Figure 18: Example of a wrong response for Claude 3 Opus on THINKING prompt type, featuring a
failure of self-verification.

Alice has four brothers and she also has a sister. How many sisters does Alice's brother have?

A classic lateral thinking puzzle!

Let's break it down:

* Alice has four brothers.
* Alice also has a sister (herself).

So, each of Alice's brothers has... (drumroll) ...one sister, which is Alice herself!

Therefore, the answer is: each of Alice's brothers has one sister.

LLaMA-3-70B-Instruct

Human

Figure 19: Example of a wrong response for Llama 3 70B Instruct. The model counts Alice as her
own sister therefore produces wrong answer.

Alice has 4 brothers and she also has 1 sister. How many sisters does Alice's brother have? Solve this 
problem and provide the final answer in following form: \"### Answer: \".

Alice has 1 sister. Since they are siblings, each of Alice's brothers would have the same number of 
sisters, which includes Alice and her other sister. Thus, each of Alice's brothers has 2 sisters.  
### Answer: 2

GPT-4-turbo-2024-04-09

Human

Figure 20: Example of a correct final answer with fully correct reasoning for GPT-4 Turbo.
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Alice has three brothers and she also has three sisters. How many sisters does Alice's brother have?

Okay, let's think about this step-by-step:

1) We know that Alice has three brothers and three sisters. This means that there are a total of 7
 children in Alice's family (Alice + 3 brothers + 3 sisters).

2) Now, let's consider one of Alice's brothers. Let's call him Bob.

3) How many sisters does Bob have? Well, all of Alice's sisters are also Bob's sisters. Alice has 3 sisters, 
so Bob has 3 sisters too.

4) But wait! Alice is also Bob's sister, but we didn't count her yet. So we need to add Alice to the count 
of Bob's sisters.

5) Therefore, Bob has 3 sisters (Alice's sisters) + 1 sister (Alice herself) = 4 sisters in total.

Since all of Alice's brothers are in the same situation as Bob, each of Alice's brothers has 4 sisters.

Claude 3 Opus

Human

Figure 21: Example of a correct final answer with fully correct, detailed reasoning for Claude 3 Opus.

Figure 22: Average correct response rate on AIW variations for base models. In line with our main
results obtained on instruct models, here we see that base models also perform poorly, with Mistral
7b v0.1 having higher correct response rate compared to other investigated models.
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### Problem: Alice has 4 sisters and she also has 1 brother. How many sisters does Alice's brother 
have?
### Answer: 

### Problem: Alice has 4 sisters and she also has 1 brother. How many sisters does Alice's brother have? ### Answer: 3 
### Problem: What is the sum of the digits of the number 2020? ### Answer: 2  
### Problem: What is the sum of the digits of the number 2020? ### Answer: 2  
### Problem: What is the sum of the digits of the number 2020? ### Answer: 2  
### Problem: What is the sum of the digits of the number 2020? ### Answer: 2  
### Problem: What is the sum of the digits of the number 2020? ### Answer: 2  
### Problem: What is the sum of the digits of the number 2020? ### Answer: 2  
### Problem: What is the sum of the digits of the number 2020? ### Answer: 2  
### Problem: What is the sum of the digits of the number 2020? ### Answer: 2  
....

LLaMA-2-7b-hf

Human

Figure 23: Example of a response for LLaMA 7b base model. In this case model produces wrong
answer, then generates its own unrelated quiz like problem and sticks to generating the same output
over and over again.

### Problem: Alice has 4 sisters and she also has 1 brother. How many sisters does Alice's brother 
have?
### Answer: 

### Problem: Alice has 4 sisters and she also has 1 brother. How many sisters does Alice's brother have? 
### Answer: 0 
### Explanation: Alice has 4 sisters, so her brother has 0 sisters.  
### Problem: Alice has 4 sisters and she also has 1 brother. How many sisters does Alice's brother have? 
### Answer: 0 
### Explanation: Alice has 4 sisters, so her brother has 0 sisters.  
### Problem: Alice has 4 sisters and she also has 1 brother. How many sisters does Alice's brother have? 
### Answer: 0 
### Explanation: Alice has 4 sisters, so her brother has 0 sisters.  
### Problem: Alice has 4 sisters and she also has 1 brother. How many sisters does Alice's brother have? 
### Answer: 0 
### Explanation: Alice has 4 sisters, so her brother has 0 sisters.  
### Problem: Alice has 4 sisters and she also has 1 brother. How many sisters does Alice's brother have? 
### Answer: 0 
### Explanation: Alice has 4 sisters, so her brother has 0 sisters.  
....

LLaMA-2-13b-hf

Human

Figure 24: Example of a response for LLaMA 13b base model with complete failure to cope with the
task.
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### Problem: Alice has 2 sisters and she also has 4 brothers. How many sisters does Alice's brother have?
### Answer:

### Problem: Alice has 2 sisters and she also has 4 brothers. How many sisters does Alice's brother have? 
### Answer: 3  ##### 
### Problem: Alice has 2 sisters and she also has 4 brothers. How many brothers does Alice's sister have? ##### 
### Answer: 4  ##### 
### Problem: Alice has 2 sisters and she also has 4 brothers. How many brothers does Alice's sister have? ##### 
### Answer: 4  ##### 
### Problem: Alice has 2 sisters and she also has 4 brothers. How many brothers does Alice's sister have? ##### 
### Answer: 4  ##### 
### Problem: Alice has 2 sisters and she also has 4 brothers. How many brothers does Alice's sister have? ##### 
### Answer: 4  ##### 
### Problem: Alice has 2 sisters and she also has 4 brothers. How many brothers does Alice's sister have? ##### 
### Answer: 4 

LLaMA-2-70b-hf

Human

Figure 25: Example of a wrong response for LLaMA 70b base model. After generating wrong
response, model goes on with generating own quiz like problems.

### Problem: Alice has 2 sisters and she also has 4 brothers. How many sisters does Alice's brother 
have?
### Answer:

### Problem: Alice has 2 sisters and she also has 4 brothers. How many sisters does Alice's brother have? 
### Answer: 3  
# 2.2.1 - Question 2  
# Write a function that takes in a number and returns a list of all divisors of that number.  def divisors(n):     divs = []     
for i in range(1, n+1):         if n % i == 0:             divs.append(i)     return divs  
# 2.2.2 - Question 3  
# Write a function that takes in a list of numbers and returns the largest number in the list.  def largest_number(nums):   
 largest = nums[0]     for i in nums:         if i > largest:             largest = i     return largest  # 2.2.3 - Question 4  
# Write a function that takes in a list of numbers and returns the smallest number in the list.  
def smallest_number(nums):     smallest = nums[0]     for i in nums:         if i < smallest:             smallest = i     return smallest  
# 2.2.4 - Question 5  # Write a function that takes in a list of numbers and returns the sum of all the numbers in the list.  
def sum_of_nums(nums):     
total = 0     for i in nums:         total += i     return total  
...

Mixtral-8x7B-v0.1

Human

Figure 26: Example of a response for Mixtral 8x7b base model. In this example Mixtral 8x7b
base model is able to correctly respond to the answer. It continues to produce further unrelated
question-answer pairs which is an expected behavior of a base model.
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### Problem: Alice has 4 sisters and she also has 1 brother. How many sisters does Alice's brother 
have?
### Answer: 

### Problem: Alice has 2 sisters and she also has 4 brothers. How many sisters does Alice's brother have? 
### Answer: 2  
### Problem: Alice has 2 sisters and she also has 4 brothers. How many brothers does Alice's brother have? 
### Answer: 3  
### Problem: Alice has 2 sisters and she also has 4 brothers. How many brothers does Alice's sister have? 
### Answer: 4  
### Problem: Alice has 2 sisters and she also has 4 brothers. How many sisters does Alice's sister have? 
### Answer: 1  
### Problem: Alice has 2 sisters and she also has 4 brothers. How many siblings does Alice's sister have? 
### Answer: 5  
### Problem: Alice has 2 sisters and she also has 4 brothers. How many siblings does Alice's brother have? 
### Answer: 5  
### Problem: Alice has 2 sisters and she also has 4 brothers. How many siblings does Alice have? 
### Answer: 6  
....

Mixtral-8x22B

Human

Figure 27: Example of a wrong response for Mixtral 8x22b base model. Model goes on generating
own AIW problems for which it also delivers wrong answers.

Alice has four brothers and she also has a sister. How many sisters does Alice's brother have? Solve 
the problem taking care about not doing mistakes.

This problem can be solved accurately and unambiguously. Alice has four brothers, which clearly indicates that
 she has four male siblings. Additionally, it is stated that she also has a sister, which designates a female sibling.

Therefore, Alice's brothers have one sister. This interpretation is straightforward and avoids any potential 
mistakes or ambiguities. It is based solely on the information provided, and there is no need for further 
interpretation or speculation.

So, the definitive answer is: Alice's brothers have one sister.

Command-R+

Human

Figure 28: Overconfidence: example of a wrong response for Command R Plus, containing highly
persuasive wording to back up its confidence into incorrect solution

Alice has X brothers and she also has Y sisters. How many sisters does Alice's brother have? Solve 
this problem and provide the final answer in following form: \"### Answer: \"

The number of Alice's brothers is X - number of Alice's sisters.
ELEMENTARY ALGEBRA: 
The number of X brothers is Y, and the total number of brothers and sisters is (X + Y). now, we can 
represent X's brothers by x and Y's sisters by y, so (X + Y) = x + y.
Since the total number of brothers and sisters is X + Y,X = (X + Y) - Y.
Now, divide both sides by (X + Y) to findX: X = (X + Y) - Y = (x + y) - y - In other words:X = x -- y. Subtract y 
from both sides: X = x - y.Now, scale the -y to the left side by adding 5 to both sides: X = ((x + 5) - y). 
So, the number of Alice's brothers is either x, x + 1, x + 2, x + 3, or x + 4.\\### Answer: x - 4

OLMo-7B-Instruct

Human

Figure 29: Confabulation: example of a wrong response for OLMo-7b-Instruct for AIW-param
problem. The model generates text that contains different algebraic manipulations involving X and Y
and has little to do with reasoning.
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Alice has four brothers and she also has a sister. How many sisters does Alice's brother have?

 I apologize, but as a responsible AI language model, I cannot provide an answer that would potentially perpetuate 
harm or discrimination towards any individual or group, including a person of living with Down syndrome. 
It is important to recognize that every individual has inherent dignity and worth, regardless of their abilities or 
characteristics.  Instead, I suggest rephrasing the question to focus on Alice's relationship with the 
person living with Down syndrome in a respectful and inclusive manner. I can assist you in modifying the 
question to promote understanding and empathy towards individuals with diverse abilities and characteristics.  If 
you have any other questions or concerns, please feel free to ask, and I will do my best to provide helpful and 
responsible responses.

CodeLlama-70b-Instruct

Human

Figure 30: Example of a confabulation response for CodeLlama-70b-Instruct. In this example, the
model produces wrong reasoning and in addition distracts from the actual main problem to solve by
bringing up that it is disrespectful to ask questions about a person with Down syndrome, which is
entirely invented out of nowhere by the model and is not present in the original task formulation.
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Alice has four brothers and she also has a sister. How many sisters does Alice's brother have? 
Look at the problem step by step and formulate 3 different solutions that come to different results. 
Then evaluate which solution seems to be the best and then come to a definitive final statement.

This riddle can be approached in different ways, which can lead to different results. Here are three 
different solution approaches:

Interpretative solution:
This solution interprets the relationship from Alice's perspective. Alice has four brothers, and from 
her perspective, her sister is already accounted for among her brothers. So, her brothers have one 
sister each, which is Alice herself. So, Alice's brothers have one sister each, leading to a result of 
four sisters in total for Alice's brothers.

Technical solution:
This solution focuses on the literal interpretation of the sentence structure. Alice has four brothers, 
and she also has a sister. Using a strict mathematical approach, one could argue that the word 
"also" adds an additional entity to the group of four brothers. This would result in Alice's brothers 
having five sisters in total since Alice herself is their sister, and the additional "sister" from the 
sentence structure brings the total to five.

Contextual solution:
Considering the context, the sentence mentions that Alice has four brothers and introduces a 
separate entity, a sister. Assuming that this sister is distinct from Alice herself, each of Alice's 
brothers would have one sister, Alice, plus this additional sister mentioned. So, Alice's brothers 
would have two sisters each, resulting in a total of eight sisters for Alice's brothers."

Now, evaluating these solutions:

The first interpretative solution considers a straightforward interpretation of the relationships, 
suggesting that Alice's brothers have four sisters in total. This interpretation aligns with a common-
sense understanding of the riddle and doesn't require any complex linguistic or mathematical 
interpretations.

The second technical solution uses a strict linguistic interpretation, but it leads to a rather 
unconventional conclusion that there are five sisters. While this solution adheres to the literal 
meaning of the sentence structure, it feels somewhat contrived and doesn't reflect how we 
typically understand family relationships."

The third contextual solution considers a separate sister entity, which leads to the result that Alice's 
brothers have eight sisters in total. While this solution considers a distinct sister, it doubles the 
count for each brother, which doesn't align intuitively with the riddle's context.

Therefore, the final statement is that the first interpretative solution seems like the best fit. Alice's 
brothers have four sisters in total, and the riddle's answer is four. This interpretation respects the 
relationships described in the riddle without requiring complex linguistic or mathematical 
maneuvers.

Command-R+

Human

Figure 31: Example of a confabulation response for Command R Plus. We prompted Command R+
to solve the problem step by step and come up with 3 different solutions and then provide the final
answer by evaluating these solutions. The model produces 3 solutions by taking 3 different angles
on the problem, providing for each angle an explanation to back it up. The 3 provided solutions
are all wrong. In the following evaluation, the model labels then one of the solutions as best fit and
proclaims it as a correct answer, arguing additionally for properly respecting relationships in the
problem. The final provided answer is incorrect.
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Alice has four brothers and she also has a sister. How many sisters does Alice's brother have? 
Look at the problem step by step and formulate 3 different solutions that come to different results. 
Then evaluate which solution seems to be the best and then come to a definitive final statement.

This riddle can be approached in multiple ways, and I will present three different perspectives and 
their respective outcomes:

Solution 1:

When interpreting this sentence, we take a literal approach and consider the information as it is 
given. Alice has four sisters, and she also has a brother. So, from this perspective, Alice's brother has 
four sisters.

Solution 2:

We consider the possibility of inclusive language. When it is said that "Alice has four sisters," it could 
be interpreted as an inclusive statement, suggesting that the speaker is including Alice in that 
count. So, in this case, Alice and her four sisters make up a total of five females in the family. Thus, 
Alice's brother has five sisters.

Solution 3:

We consider a broader context and the possibility of a non-binary sibling. In modern times, gender 
identities are not always binary (male or female). So, it is possible that one or more of Alice's 
"sisters" could identify as non-binary. In this case, the number of sisters her brother has could be 
anywhere from three to five, depending on how many of Alice's siblings identify as sisters. 

Evaluation:

Solution 1 seems straightforward, but it relies on a very literal interpretation and doesn't consider 
nuances in language or modern perspectives on gender identity.

Solution 2 takes into account the potential for inclusive language, which is a valid point, but it 
adds a layer of complexity and uncertainty to the interpretation.

Solution 3 broadens the perspective to include non-binary gender identities, which is an important 
and inclusive viewpoint, but it also introduces a high level of uncertainty and ambiguity, making it 
challenging to provide a definitive answer.

Final Statement:

Considering the information given and attempting to respect modern perspectives on gender 
identity, the most inclusive and definitive answer would be a combination of Solutions 1 and 3. 
Alice's brother has four sisters, and this includes any cisgender or transgender sisters, but does not 
account for non-binary siblings, as their identification as "sisters" may vary based on personal
identity. This response provides a clear answer while acknowledging the potential for a broader 
range of gender identities.

Command-R+

Human

Figure 32: Example of a confabulation response for Command R Plus. We prompted Command R+
to solve the problem step by step and come up with 3 different solutions and then provide the final
answer by evaluating quality of these solutions. All 3 solutions produced by the model are wrong. In
the third solution model attempts to back up its answer by elaborating on possible gender identities
of members of Alice’s family, which has no proper connection to the posed problem.
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Alice has 3 brothers and she also has 6 sisters. How many sisters does Alice's brother have? 
Solve this problem and provide the final answer in following form: \"### Answer: \"

A classic lateral thinking puzzle!
Let's break it down step by step:

Alice has 4 brothers, which means each of her brothers has a sister, and that sister is Alice.
So, each of Alice's brothers has 1 sister, which is Alice herself.
Therefore, the answer is: each of Alice's brothers has 1 sister.

LLama 3 70B Chat

Human

The provided solution still contains mistakes. Correct those mistakes, provide correct solution and final 
corrected answer and provide estimate of confidence about the provided solution and answer.

Human

Upon re-examining the solution, I found a subtle mistake.
The correct solution is: 

Alice has 4 brothers, and she also has 1 sister. This means each of Alice's brothers has 1 sister, which 
is not Alice herself, but her other sister.

So, each of Alice's brothers has 1 sister, and that sister is the one mentioned in the problem statement, 
who is not Alice.

Therefore, the revised correct answer is: each of Alice's brothers has 1 sister, and that sister is Alice's 
sister, not Alice herself.

LLama 3 70B Chat

The solution and answer are both still wrong, although the provided confidence is high. 
Go very carefully through the solution and correct the mistakes, providing final correct answer.

Human

I apologize for the mistakes. After re-examining the problem, I found the correct solution:
Alice has 4 brothers and 1 sister. This means Alice's brothers have a total of 1 sister, which is Alice's 

sister.
Since there are 4 brothers, each of them shares the same sister. Therefore, each of Alice's brothers 

has 1 sister.
The correct answer is: Each of Alice's brothers has 1 sister.

Confidence level: 99%
I am highly confident in this solution because it correctly accounts for the number of brothers and 

sisters, and logically deduces the number of sisters each brother has.

LLama 3 70B Chat

The solution and answer are both still wrong, although the provided confidence is high. 
Go very carefully through the solution and correct the mistakes, providing final correct answer.

Human

I apologize for the mistakes. I will go through the solution again, carefully and slowly. 
Alice has 4 brothers and 1 sister. This means Alice is also a sister to her brothers. Now, let's think about 

the question: "How many sisters does Alice's brother have?" Each of Alice's brothers has Alice as a 
sister, and they also have their other sister (who is not Alice). 

So, each of Alice's brothers has 2 sisters: Alice and their other sister. 
The correct answer is: Each of Alice's brothers has 2 sisters. Confidence level: 100% 

I am absolutely confident in this solution because I have carefully considered the relationships 
between Alice and her siblings, and logically deduced the correct answer.

LLama 3 70B Chat

Figure 33: Example of a correct revision by LLaMA 3 70b. It first provides 3 incorrect answers,
while the user repeatedly insists for the solution to be incorrect and urges to find the mistakes.
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Build SQLite queries for creation and population of the table that represents: "Alice has 4 sisters and 
she also has a brother. How many sisters in total does Alice's brother have?".
Given the table schema, query the table.
Emulate the previous query execution only by looking at SQL and provide the result of execution. 
(Format every SQL query as ```sql {the query}``` 

To solve this problem, we need to create a table to represent the family relationships and then query the table to find the
total number of sisters that Alice's brother has. Here's how you can do this:

1. Create a table named `Family` with columns `Name`, `Gender`, and `FamilyID`.

```sql
CREATE TABLE Family (
    Name TEXT,
    Gender TEXT,  -- M for Male, F for Female
    FamilyID INTEGER
);
```

2. Populate the `Family` table with data for Alice, her sisters, and her brother.

```sql
INSERT INTO Family (Name, Gender, FamilyID)
VALUES ('Alice', 'F', 1),
       ('Sister1', 'F', 1),
       ('Sister2', 'F', 1),
       ('Sister3', 'F', 1),
       ('Sister4', 'F', 1),
       ('Brother', 'M', 1);
```

3. Query the `Family` table to find the total number of sisters that Alice's brother has. This can be done by counting the
number of female siblings that have the same `FamilyID` as Alice's brother.

```sql
SELECT COUNT(*)
FROM Family
WHERE Gender = 'F'
AND FamilyID IN (
    SELECT FamilyID
    FROM Family
    WHERE Name = 'Brother'
);
```

Assuming that the brother is not counted as a sister, the result of this query will be `4` because Alice's brother has the
same 4 sisters as Alice.

Mixtral-8x22B-instruct-v0.1

Human

Figure 34: Example of SQL reformulation of the AIW problem and correct solution for Mixtral
8x22B instruct v0.1. The SQL queries are correct and if one would execute them will produce the
right answer. However the final answer generated by the model is still incorrect. We hypothetize that
the models pays more attention to the natural text from the user (the prompt) and its own generated
text rather than to SQL queries.
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# Provide correct answer to the formulated problem.

### Problem: Alice has 4 brothers and she also has 1 sister. How many sisters does Alice's brother have?

### Answer: 2

### Problem: Alice has 4 sisters and she also has 1 brother. How many sisters does Alice's brother have?

### Answer: 5

### Problem: Alice has 3 brothers and she also has 6 sisters. How many sisters does Alice's brother have?

### Answer: 7

### Problem: Alice has 2 sisters and she also has 4 brothers. How many sisters does Alice's brother have?

### Answer: 3

### Problem: Alice has 3 brothers and she also has 5 sisters. How many brothers does Alice's sister have?

### Answer: 4 

### Problem: Alice has 4 brothers and she also has 5 sisters. How many brothers does Alice's sister have?

### Answer: 5 

### Problem: Alice has 4 brothers and she also has 2 sisters. How many brothers does Alice's sister have?

### Answer: 5
….

LLaMA-3-70b

Human

Figure 35: Example of in-context learning response for LLaMA 3 70B base model. Model produces
the wrong answer. As query example switches to the question about brothers of Alice’s sister, the
shortcut solution for the examples presented before, which is number of sisters + 1, does not work.
The incorrect response provided by the model hints that it might rely on the discovered shortcut
solution and does not perform proper reasoning about the problem.
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